ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 25 (1986), S. 272-276 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Cellobiose-grown cells of Candida wickerhamii transported cellobiose as glucose by a glucose-proton symport after previous hydrolysis of the disaccharide by an exocellular β-glucosidase. Both the symport and the β-glucosidase were subject to glucose-induced repression and inactivation while glucose also acted as a competitive inhibitor of the enzyme (K i 0.3 mM). Under conditions of glucose repression glucose was transported by facilitated diffusion. Cellobiose acted as a competitive inhibitor of the latter (K i 75 mM) and is possibly a low-affinity substrate, while it inhibited non-competitively the glucoseproton symport (K i 80 mM). The affinity of cellobiose for the cell-bound β-glucosidase was much higher (K m 4.2 mM) than for the purified enzyme as reported by others (K m 67–225 mM). Ethanol reversibly inhibited the two glucose transport systems with exponential non-competitive kinetics. The minimum inhibitory concentrations were about 3% and 4% (w/v) for facilitated diffusion and proton symport while the respective exponential inhibition constants were 0.58 l mol-1 and 1.65 l mol-1. Ethanol affected the β-glucosidase in a complex way, a major effect was deviation from Michaelis-Menten kinetics for ethanol concentrations higher than 4% (w/v), the Hill coefficient increasing up to 1.8 at 6% (w/v) ethanol.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...