ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Marine biology 105 (1990), S. 337-344 
    ISSN: 1432-1793
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract High-frequency fluctuations due to wavefocusing are prominent characteristics of light in shallow marine environments. Effects of high-frequency (0.01 to 1 Hz) fluctuating light on growth rates of the red algaChondrus crispus Stackh., collected from Crane Neck Point, New York, USA, during July 1988, were determined by comparing plants grown under fluctuating and constant light regimes with similar daily irradiances. At high daily irradiance, growth rates were higher under fluctuating light than under constant light. Fluctuating light effects were frequency-dependent; growth was enhanced by fluctuations at 0.1 and 1 Hz, but not by fluctuations at 0.01 Hz. At low daily irradiance, growth rates were not affected by fluctuating light at any frequency tested. Enhancement of growth was not due to effects of high-frequency light fluctuations on photoacclimation responses ofC. crispus. Plants grown under fluctuating light at high daily irradiance actually exhibited lower photosynthetic capacity and efficiency (determined under constant light) than plants grown under constant light. These differences were attributable to variation in the density of Photosystem II reaction centers, which was low in plants grown under fluctuating light. Maximum turnover rate of whole-chain electron transport and activity of ribulose-1,5-bisphosphate carboxylase were affected by total daily irradiance, but not by high-frequency light fluctuations. Enhancement of growth under fluctuating light was partly attributable to reduced rates of dark respiration compared to rates of plants grown under constant light. The results also provided indirect evidence that high-frequency light fluctuations may enhance instantaneous photosynthetic rates. This effect could increase daily carbon gain and, therefore, stimulate growth ofC. crispus under high-frequency light fluctuations.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...