ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Mineralium deposita 32 (1997), S. 335-348 
    ISSN: 1432-1866
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  As depth of mining increases, so the production costs of the aurifereous Witwatersrand deposits are continuously increasing, with some mines already mining at depths exceeding 3500 m. Health and safety aspects are, simultaneously, gaining in importance. Therefore, in order to mine deep orebodies in existing mines, as well as to develop new mining ventures safely and efficiently, novel approaches, including mining strategies, layouts and support systems have to be adopted. Geological features largely control the deformation mechanisms associated with Witwatersrand orebodies. These features are grouped into two major categories: primary and secondary features. Both impact on the rockmass behaviour associated with the excavations, and contribute to the definition of geotechnical areas. Primary geological features are defined by the various rock types, orebody geometry, and the frequency and mineralogical characteristics of sedimentary structures (e.g. various kinds of bedding planes and lithological boundaries). The primary features also control rock engineering properties, closure rates, attitude and frequency of mining-induced stress fracturing, and planes may be reactivated during seismic events. Secondary geological features are faults, dykes and veins/joints, and associated metamorphism. These cause stability problems and are often associated with seismic events. Compositional and textural characteristics of these features, and their controls on the rockmass behaviour, are ill-defined. Primary and secondary geological characteristics also play an important role in identifying the appropriate mining strategy, layout and support. Geological features can be predicted into deep unmined areas, and therefore contribute to the safest and most efficient extraction of the orebody. Witwatersrand orebodies are mined in complex geological environments, with the rockmass behaviour differing from one orebody to the other. This is approached by employing a new methodology that attempts to quantify the problems encountered when mining the major Witwatersrand orebodies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...