ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1090-6525
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract A molecular dynamics method was used to simulate crack propagation in pure and hydrogen-containing aluminum and α-iron for loads far exceeding the critical values. Pairwise interaction potentials calculated within the Heine-Abarenkov-Animalu pseudopotential approximation were applied. It was shown that cracks do not propagate in the pure metals. Their tips become blunt, mouths broaden, and internal stresses are released owing to arising dislocations and necking. This means that mechanisms of viscous fracture come into play. In the presence of hydrogen impurity, the situation is quite different. In aluminum, hydrogen desorbs and the material retains its ductility. In α-iron, hydrogen forms Cottrell clouds around dislocations, thus suppressing their movement and generation. In addition, an increase in the hydrogen concentration in iron near the crack mouth makes the material more prone to α → γ phase transition. As a result, crack propagation is observed; i.e., the material embrittles.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...