ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 203 (2000), S. 1-10 
    ISSN: 1573-4919
    Keywords: lipid oxidation ; hydroxyl radical ; peroxyl radical ; chelation ; DNA ; Fenton reaction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract A North American ginseng extract (NAGE) containing known principle ginsenosides for Panax quinquefolius was assayed for metal chelation, affinity to scavenge DPPH-stable free radical, and peroxyl (LOO·) and hydroxyl (·OH) free radicals for the purpose of characterizing mechanisms of antioxidant activity. Dissociation constants (Kd) for NAGE to bind transition metals were in the order of Fe2+ 〉 Cu2+ 〉 Fe3+ and corresponded to the affinity to inhibit metal induced lipid peroxidation. In a metal-free linoleic acid emulsion, NAGE exhibited a significant (p ≤ 0.05) concentration (0.01-10 mg/mL) dependent mitigation of lipid oxidation as assessed by the ammonium thiocyanate method. Similar results were obtained when NAGE was incubated in a methyl linoleate emulsion containing haemoglobin catalyst and assessed by an oxygen electrode. NAGE also showed strong DPPH radical scavenging activity up to a concentration of 1.6 mg/mL (r2 = 0.996). Similar results were obtained for scavenging of both site-specific and non site-specific ·OH, using the deoxyribose assay method. Moreover, NAGE effectively inhibited the non site-specific DNA strand breakage caused by Fenton agents, and suppressed the Fenton induced oxidation of a 66 Kd soluble protein obtained from mouse brain over a concentration range of 2-40 mg/mL. These results indicate that NAGE exhibits effective antioxidant activity in both lipid and aqueous mediums by both chelation of metal ions and scavenging of free radicals.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...