ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of statistical physics 95 (1999), S. 997-1008 
    ISSN: 1572-9613
    Keywords: adsorption ; aggregation ; colloids ; interfaces ; wetting
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract More than two decades ago, in a seminal paper John Cahn proposed scaling arguments for the possibility of a wetting transition in two coexisting fluid phases near the critical point. Since then, Cahn's model has been tested in many fluid systems and further refined by including the real interactions between the fluid and the solid wall. A fascinating consequence of the existence of a wetting transition is the possibility for a transition from weak to strong adsorption in the homogeneous phase. The situation is further enriched in nonstandard geometries having special geometrical constraints. The subject of this review concerns one such situation, where charge-stabilized colloidal particles are suspended in the homogeneous region of a binary liquid mixture. In this case, the preferential adsorption of one of the liquid components on to the colloid surface completely modifies the stability of the particles leading to an aggregation process. Although the exact mechanism underlying the adsorption phenomenon is still debated, it is closely related to the wetting transition. Recent experimental developments concerning the static and dynamic aspects of this phenomenon are reviewed. In addition, the main findings of a theoretical model based on the adsorption-modified electrostatic interactions between the colloidal particles are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...