ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of chemical ecology 16 (1990), S. 107-118 
    ISSN: 1573-1561
    Keywords: Flagella ; motility ; chemical gradients ; temporal sensing ; bacterial memory ; chemoreceptors ; signal generation ; intracellular signaling ; protein phosphorylation ; protein methylation ; adaptation ; Bacterium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Bacteria swim by rotating semirigid, left-handed helical flagellar filaments; counterclockwise (CCW) rotation produces straight swims, known as “runs,” and clockwise (CW) rotation generates abrupt changes in direction, known as “tumbles.” As a cell moves through its environment, alternately running and tumbling, it detects spatial gradients of attractants and repellents by making temporal comparisons of their concentration. These chemicals bind to receptors in the cell envelope to modulate the activity of the chemotactic signal transducers, proteins that span the cytoplasmic membrane. Signals generated by the transducers control the motion of the flagella to promote migration up attractant gradients and down repellent gradients. Chemotactic adaptation, accomplished by methylation-demethylation of the transducers, cancels out these signals. Adaptation is an essential component of the “memory” that allows bacteria to use a temporal mechanism to detect spatial gradients. Both signaling and adaptation are mediated by changes in the level of phosphorylation of several cytoplasmic chemotaxis (Che) proteins. The activity of the transducers regulates the rate of autophosphorylation of the CheA protein, which then passes the phosphate on to other proteins. In particular, phosphorylated CheY protein controls the frequency of tumbling because it promotes CW flagellar rotation, and the CheB esterase modulates adaptation because its nonphosphorylated form removes methyl groups from the transducers much more slowly than its phosphorylated form.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...