ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 186 (1996), S. 293-309 
    ISSN: 1573-5036
    Keywords: Amazon ; humid tropics ; improved fallows ; managed fallows ; nutrient balances ; nutrient stocks ; tropical secondary forest
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Managed fallows which recover nutrients more rapidly than natural secondary vegetation may improve the performance of shifting agriculture systems operating under inadequately long fallow cycles. Our objective was to construct nutrient balances for the soil, vegetation, and litter compartments of six planted leguminous fallows and natural secondary vegetation during 53 months. The fallows were planted on a previously cultivated Ultisol (Acrisol) in the Peruvian Amazon and included:Centrosema macrocarpum (Centrosema),Pueraria phaseoloides (Pueraria),Stylosanthes guianensis (Stylosanthes),Desmodium ovalifolium (Desmodium),Cajanus cajan (Cajanus), andInga edulis (Inga). In addition, in the natural fallow treatment secondary vegetation was allowed to establish and grow naturally. Quantities of extractable P, K, Ca, and Mg, total N, and organic C in soil to a 45 cm depth, and macrouttrients in aboveground biomass, roots, and litter were estimated at fallow planting, at 8, 17, and 29 months afterward, and at fallow clearing (53 months). Total N stocks increased by 10% in the Stylosanthes, Desmodium, Pueraria, and Inga treatments, but changed little in the Cajanus, Centrosema and natural fallows. This difference was largely due to greater net increases in both soil and vegetation compartments in the former group of treatments. In the Inga, Desmodium, and natural fallows, total stocks of P and K at 53 months were about 40% to 80% greater and 12% greater, respectively, than initial values, but Ca and Mg stocks were reduced by 25% to 40%. In the other treatments, there was generally little change in P stocks, but large (30% to 60%) reductions in K, Ca, and Mg during the course of the fallow. Although there were net decreases of stocks of P, K, Ca, and Mg in soil in all treatments during the fallow, storage of P and K in vegetation and litter in the Inga, Desmodium, and natural fallows offset losses of these nutrients from soil. These treatments also tended to accumulate more Ca and Mg in biomass and litter than the other treatments. These results suggest that leguminous fallow vegetation that accumulates large amounts of biomass may increase N, P, and K stocks, but that incomplete recuperation of Ca and Mg may limit the sustainability of short-rotation fallow-based systems on acidic, infertile soils. ei]Section editor: G R Stewart
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...