ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5036
    Keywords: Brassica napus ; canola ; nitrogen nutrition ; irrigation ; 15N isotope ; oilseed rape
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The seasonal course of nitrogen uptake, incorporation and remobilization in different shoot components of winter oilseed rape (Brassica napus L.) was studied under field conditions including three rates of 15N labelled nitrogen application (0, 100 or 200 kg N ha-1) and two irrigation treatments (rainfed or watered at a deficit of 20 mm). The total amount of irrigation water applied was 260 mm, split over 13 occasions in a 7-week-period ranging from 1 week before onset of flowering until 4 weeks after flowering. Nitrogen application and irrigation increased plant growth and nitrogen accumulation. Irrespective of N and irrigation treatment more than 50% of total shoot N was present in the stem when flowering started. At the end of flowering, pod walls were the main N store containing about 30–40% of shoot N. The quantities of N remobilized from stems and pod walls amounted in all treatments to about 70% of the N present in these organs at mid-flowering. At harvest, stem and pod walls each contained about 10% of total shoot N, the remaining 80% being incorporated into seeds. The main component contributing to the response of seed N accumulation to nitrogen application and irrigation was pods in axillary racemes. Up to 20 kg N ha-1, corresponding to about 10% of final shoot N content, was lost from the plants by leaf drop. Irrigation increased the recovery at harvest of applied N from 30% to about 50%, while the level of N application did not affect the N recovery. 15N labelled (fertilizer derived) nitrogen constituted a greater proportion of the N content in old leaves than in young leaves and increased with age in the former, but not in the latter. Relative to soil N, fertilizer derived N also contributed more to the N content of vegetative than to that of reproductive shoot components. Small net changes in shoot N content after flowering reflected a balance between N import and export, leading to continuous dilution of 15N labelled N with unlabelled N.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...