ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5095
    Keywords: Tea tree oil ; genetic parameters ; combined index selection ; breeding strategy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Variation in oil yields from plantations and natural stands of Melaleuca alternifolia (Maiden and Betche) Cheel indicates considerable potential for improving plantation production through breeding. Some populations of the more widely distributed species, M. linariifolia Sm., produce a similar leaf oil and may provide opportunities to expand the genetic base of plantations. Growth and oil traits were assessed for 60 half-sib families, representing three chemical forms of Melaleuca alternifolia, and 10 half-sib families of the terpinen-4-ol rich chemical form of M. linariifolia, in a provenance/progeny trial in northern New South Wales, Australia. Differences in oil composition and coppicing between the terpinen-4-ol rich forms of the two species were significant (P 〈 0.05), while differences in growth traits and leaf oil yield were not significant. The difference in oil composition between northern and southern populations of M. linariifolia was as great as differences between the two species, suggesting the two regions should be considered distinct races for breeding purposes. Narrow-sense heritabilities in M. alternifolia of 0.67 for oil yield, 0.25 for plant dry weight, and 0.27 for coppice indicate substantial improvement would follow selection for single traits. However, negative genetic correlations between oil yield and plant dry weight indicate it is not possible to simultaneously achieve major gains in the two traits. Using combined index selection with a restriction on plant dry weight, expected gains of 17% in oil yield and 14% in coppicing are predicted from one generation of selection at an intensity of one tree in ten.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...