ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-0581
    Keywords: mid-ocean ridges ; oblique extension ; abyssal hills
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract On the Mid-Atlantic Ridge (MAR) from 34°–35.5° S, three ridge segments span the 108 km distance between the Meteor Fracture Zone (FZ) and the Montevideo FZ. Each of these segments is perpendicular to the adjoining transforms. Magnetic isochrons in the southern half of the region are oblique to the spreading direction and are offset from the morphological expression of the plate boundary, revealing a transition from oblique to orthogonal spreading within the last 750,000 years. Changes in orientation and cross-sectional form of the rift valley, as modified by tectonic processes, are preserved in the off-axis abyssal-hill fabric. We present a new statistical method for describing size and orientation of abyssal hills based on local slopes. For a given offset, the range of sorted slopes from the first to third quartile provides a robust estimate of topographic variability. The variability can be parametrized by azimuthal direction, plan-view aspect ratio, characteristic height and width. We resolve lineation azimuth within 6°, and characteristic height, width and aspect ratio within 20–30%, using 18 by 21 km sample boxes crossed by multiple Sea Beam swaths covering approximately 30% of the box. In the northern portion of the survey, the azimuth is mainly ridge parallel, while in the southern portion, the azimuth rotates 23° clockwise from ridge strike. Characteristic height and width are greater in the southern half than in the northern half, while aspect ratios are lower. The asymmetry of quartiles about the median slope provides evidence that inward-facing normal faults bounding the rift valley are a significant source of topography. Fabric disrupted by migration of small-offset discontinuities has higher than average characteristic height. Characteristic height and width correlate positively with residual gravity, an indicator of crustal thinning. A residual gravity low, possibly the current focus of upwelling, coincides with a newly formed spreading axis. These correlations suggest that evolution of ridge geometry can be controlled by crust and mantle thermal structure. Either variation in magma supply, resulting in changes in stress normal to the ridge axis, or a major realignment of the Montevideo Transform, temporarily resulting in increased shear stress across newly activated faults, may have been responsible for changes in orientation and morphology of the spreading center.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...