ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of paleolimnology 1 (1988), S. 249-267 
    ISSN: 1573-0417
    Keywords: paleolimnology ; river diversion ; climate change ; pollen ; diatoms ; ostracodes ; brine shrimp
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract Diatoms, crustaceans, and pollen from sediment cores, in conjunction with dated shoreline tufas provide evidence for lake level and environmental fluctuations of Walker Lake in the late Quaternary. Large and rapid changes of lake chemistry and level apparently resulted from variations in the course and discharge of the Walker River. Paleolimnological evidence suggests that the basin contained a relatively deep and slightly saline to freshwater lake before ca. 30 000 years B.P. During the subsequent drawdown, the Walker River apparently shifted its course and flowed northward into the Carson Sink. As a result, Walker Lake shallowed and became saline. During the full glacial, cooler climates with more effective moisture supported a shallow brine lake in the basin even without the Walker River. As glacial climates waned after 15 000 years ago, Walker Lake became a playa. The Walker River returned to its basin 4700 years ago, filling it with fresh water in a few decades. Thereafter, salinity and depth increased as evaporation concentrated inflowing water, until by 3000 years ago Walker Lake was nearly 90 m deep, according to dated shoreline tufas. Lake levels fluctuated throughout this interval in response to variations in Sierra Nevada precipitation and local evaporation. A drought in the Sierras between 2400 and 2000 years ago reduced Walker Lake to a shallow, brine lake. Climate-controlled refilling of the lake beginning 2000 years ago required about one millennium to bring Walker lake near its historic level. Through time, lake basins in the complex Lake Lahontan system, fill and desiccate in response to climatic, tectonic and geomorphic events. Detailed, multidisciplinary paleolimnologic records from related subbasins are required to separate these processes before lake level history can be reliably used to interpret paleoclimatology.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...