ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal for general philosophy of science 30 (1999), S. 201-232 
    ISSN: 1572-8587
    Keywords: scientific revolutions ; epistemic ruptures ; epistemicframework ; incommensurability ; paradigm ; Kuhn ; Lakatos ; Crowe ; Dauben
    Source: Springer Online Journal Archives 1860-2000
    Topics: Philosophy , Nature of Science, Research, Systems of Higher Education, Museum Science
    Notes: Abstract The question whether Kuhn's theory of scientific revolutions could be applied to mathematics caused many interesting problems to arise. The aim of this paper is to discuss whether there are different kinds of scientific revolution, and if so, how many. The basic idea of the paper is to discriminate between the formal and the social aspects of the development of science and to compare them. The paper has four parts. In the first introductory part we discuss some of the questions which arose during the debate of the historians of mathematics. In the second part, we introduce the concept of the epistemic framework of a theory. We propose to discriminate three parts of this framework, from which the one called formal frame will be of considerable importance for our approach, as its development is conservative and gradual. In the third part of the paper we define the concept of epistemic rupture as a discontinuity in the formal frame. The conservative and gradual nature of the changes of the formal frame open the possibility to compare different epistemic ruptures. We try to show that there are four different kinds of epistemic rupture, which we call idealisation, re-presentation, objectivisation and re-formulation. In the last part of the paper we derive from the classification of the epistemic ruptures a classification of scientific revolutions. As only the first three kinds of rupture are revolutionary (the re-formulations are rather cumulative), we obtain three kinds of scientific revolution: idealisation, re-presentation, and objectivisation. We discuss the relation of our classification of scientific revolutions to the views of Kuhn, Lakatos, Crowe, and Dauben.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...