ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 48 (2000), S. 21-51 
    ISSN: 1573-515X
    Keywords: carbon cycle ; decomposition ; global change ; soil organic matter ; temperature
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract The world's soils contain about 1500 Gt of organic carbon to a depth of 1m and a further 900 Gt from 1--2m. A change of total soil organic carbon by just 10% would thus be equivalent to all the anthropogenic CO2 emitted over 30 years. Warming is likely to increase both the rate of decomposition and net primary production (NPP), with a fraction of NPP forming new organic carbon. Evidence from various sources can be used to assess whether NPP or the rate of decomposition has the greater temperature sensitivity, and, hence, whether warming is likely to lead to an increase or decrease in soil organic carbon. Evidence is reviewed from laboratory-based incubations, field measurements of organic carbon storage, carbon isotope ratios and soil respiration with either naturally varying temperatures or after experimentally increasing soil temperatures. Estimates of terrestrial carbon stored at the Last Glacial Maximum are also reviewed. The review concludes that the temperature dependence of organic matter decomposition can be best described as: d(T) = exp[3.36 (T − 40)/(T + 31.79)] where d(T) is the normalised decomposition rate at temperature T (in °C). In this equation, decomposition rate is normalised to ‘1’ at 40 °C. The review concludes by simulating the likely changes in soil organic carbon with warming. In summary, it appears likely that warming will have the effect of reducing soil organic carbon by stimulating decomposition rates more than NPP. However, increasing CO2 is likely to simultaneously have the effect of increasing soil organic carbon through increases in NPP. Any changes are also likely to be very slow. The net effect of changes in soil organic carbon on atmospheric CO2 loading over the next decades to centuries is, therefore, likely to be small.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...