ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Agroforestry systems 49 (2000), S. 131-152 
    ISSN: 1572-9680
    Keywords: belowground competition ; Digitaria decumbens ; Gliricidia sepium ; root distribution ; two-dimensional soil-root water transport model
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A two-dimensional physically-based model for the daily simulation of root competition for water in an alley cropping system associating Gliricidia sepium with Digitaria decumbens is developed. This paper deals with the impact of root distribution on soil water partitioning. By adapting existing principles of root water uptake modelling for pure crops, the model accounts simultaneously for the sink terms of each species in a defined soil domain. Soil-root water transport functions are solved at the level of discrete volumes of soil; each of them are characterized by the inherent soil physical properties, root length density, soil-root distances, and the calculated sink terms of each species. The above ground boundary conditions, such as transpiration and soil evaporation, were managed by simple equations found from the literature or provided by experimental measurements. Running the model with two contrasting observed root maps, an evaluation was carried out over a 10-day period following a rainfall event. With both root maps, the simulated soil water potential profiles at the row, at 0.75 m and 1.50 m from the row did not differ significantly, and were in good agreement with the measurements. However, although water was not limiting during this period, the simulated cumulative water absorption profiles of G. sepium and D. decumbens contrasted markedly, and matched their observed root distribution. This model, although still under further development, forms the basis for development of an above and below ground coupled model to simulate plant interactions for water in intercrops or agroforestry.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...