ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of sol gel science and technology 10 (1997), S. 115-126 
    ISSN: 1573-4846
    Keywords: metal alkoxide complexes ; β-keto ligands ; hydrolysis ; particle size ; IR ; 13C NMR
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The complexation degrees of Al-, Ti- and Zr-butoxide (M) with unsaturated and saturated β-diketones (3-allylpentane-2.4-dione-APD, acetylacetone-ACAC) and β-ketoesters (methacryloxyethyl-acetoacetate-MEAA, allylacetoacetate-AAA, ethylacetoacetate-EAA) as organic ligands (L) were examined by IR and 13 C NMR spectroscopy and were found to be L:M ≥ 1.5. The hydrolytic stability of the ligands of the metal alkoxide complexes (L:M = 1) during hydrolysis/condensation reactions at the molar ratio h (H2O : OR) = 0.5–2.0 decreases with increasing H〈math〉2O:complex ratio. Furthermore, the ligand stability depends on the type of metal in the complexes and decreases in the order Al- 〉 Zr- 〉 Ti-butoxide complexes at h=1. The ACAC ligand likewise shows in the Al-, Ti- and Zr-butoxide complexes a high hydrolytic stability (95–100%) at h=1 within 7 days. The Ti- and Zr-butoxide complexes with β-ketoesters as ligand show at h=1〉 a release to a different extent e.g., up to 60% in the case of the MEAA-ligand in the Ti-butoxide complex after 2 days. In general, the hydrolytic stability of the ligands in the Ti-butoxide complexes (L:M = 1, h=1) decreases in the order ACAC 〉 APD 〉 AAA 〉 EAA ≥ MEAA. The hydrolysis/condensation reaction of complexes having a weak ligand stability leads to larger particle sizes in the sols than those with stable ACAC ligands. The results contribute to a more controlled synthesis of sols and of new inorganic-organic hybrid polymers via the sol-gel process.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...