ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 35 (2005), S. 167-207 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: We review here the theory of the early stages of oxidation of the (110) surface of Ni1x Alx, based on ab initio calculations using a plane-wave pseudopotential method. The clean surface and several oxidized surfaces have been investigated, with oxygen coverages up to 2ML of oxygen (1ML = 3 O atoms per 2 surface Al atoms). The theory to date is a description in terms of equilibrium thermodynamics, with a comparison of the free energies of several surfaces of different composition, implemented at the atomic scale. Three environmental parameters are singled out as control variables in this treatment, namely the alloy composition x (assumed to be near 0.5), the temperature T and the partial pressure of oxygen pO2. With certain reasonable approximations an analytic formula for the surface energy ?? is derived in terms of these variables and some constants that are calculated ab initio together with others that are derived from experimental thermodynamic tables. At oxygen pressures just above the threshold for bulk oxidation of NiAl, the calculations explain the observed formation of a thin film of alumina in place of NiAl surface layers, with the consequent dissolution of Ni into the bulk. Ab initio calculations illustrate how the energetics of supplying Al to the surface depends on bulk stoichiometry, which alters the relative stability of different surface oxidation states so as to favour oxidation more if the alloy is Al-rich than if it is Ni-rich.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...