ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 34 (1996), S. 623-629 
    ISSN: 0887-6266
    Keywords: poly(p-phenylene sulfide) ; electrical conductivity of poly(p-phenylene sulfide) ; Poole-Frenkel effect ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The conductivity of poly(p-phenylene sulfide) (PPS) amorphous samples sandwiched between metallic electrodes has been studied as a function of applied voltage, temperature, and electrode material. The voltage (U) dependence of the currents for electric fields within the range 103-106 V/cm exhibits exp βU1/2 behavior with β = βSchottky below the glass transition temperature (Tg ≊ 90°C), and β = βPoole-Frenkel above Tg. Coordinated temperature measurements of dc currents with different metallic contacts and thermally stimulated currents (TSC) indicate, however, that the conductivity at T 〈 Tg is consistent with the so-called “anomalous” Poole-Frenkel effect rather than the Schottky effect. Consequently, the p-type conductivity in amorphous PPS is proposed to be a bulk-limited process due to ionization of two different types of acceptor centers in the presence of neutral hole traps. © 1996 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...