ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Physics Edition 22 (1984), S. 957-978 
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The transverse magnetic relaxation of 13Cα nuclei has been studied in concentrated solutions of polystyrene. The magnetic relaxation rate was measured as a function of molecular weight at several temperatures (313,318, and 323 K) and at several concentrations (0.53, 0.43, and 0.34 g/cm3). The spin-system response of these nuclei in natural abundance exhibits a characteristic evolution from pseudosolid properties to liquidlike one, induced by decreasing the molecular weight of polymer molecules. This evolution is analogous to that already observed in protons attached to polyisobutylene or polydimethylsiloxane chains; it is assumed to be induced by an increase of the disentanglement rate of polymer chains. The spin-system response may be considered as reflecting single-chain magnetic properties, because of the low concentration of 13CCα nuclei, although all chains are in dynamic interaction with one another. The NMR disentanglement transition is interpreted in terms of a two-step motional averaging effect involving submolecules. A numerical analysis of NMR properties is given using a model of polymer chain relaxation based on a multiple-mode relaxation process, characterized by (i)a terminal relaxation time τv1 depending upon M3, the molecular weight, and approximately proportional to the polymer concentration C (like the reptation time); (ii)a relaxation-time spectrum analogous to a Rouse spectrum; (iii)a terminal relaxation time τv1 = 2.5 × 10-2s for M = 2.5 × 105, C = 0.53 g/cm3 in carbon tetrachloride at 313 K.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...