ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Physics Edition 20 (1982), S. 1513-1524 
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Dilute-solution hydrodynamic data for xanthan biopolymer in water suggest a rodlike molecule of dimensions 15,000 × 20 Å, and molecular weight 2.2 × 106 g/mol. Upon addition of NaCl to this system, the xanthan molecules self-associate to form stable aggregates. The native xanthan conformation can be thermally denatured to a disordered coil which can be stabilized at room temperature in 4M urea. The transition to semidilute solutions is manifested by discrete changes in the concentration dependence of diffusion coefficient and zero-shear viscosity at c ≈ 2.0 × 10-4 g/mL. At higher concentrations c ≥ 1.0 × 10-3 g/mL, the light-scattering and shear-viscosity data are qualitatively but not quantitatively consistent with predictions of the dynamical theory of Doi and Edwards for an isotropic entangled solution of rigid-rod molecules. Measurements of latex sphere diffusion in xanthan-water solution show a sudden retardation at c ≈ 1.0 × 10-3 g/mL, consistent with the cooperative formation of a motionally restricted network of long, thin, rigid fibers. At high shear rates, flow birefringence experiments indicate enhanced ordering of the xanthan chains in the semidilute regime.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...