ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Physics Edition 16 (1978), S. 1709-1719 
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The steady-state and dynamic melt rheology for a series of poly(1-olefins) has been investigated. The series includes poly(1-butene), poly(1-hexene), poly(1-heptene), poly(1-octene), Poly(1-undecene), poly(1-tridecene), poly(1-hexadecene), and poly(1-octadecene). The flow behavior was investigated by use of a Weissenberg rheogoniometer. Measurements on poly(1-butene) were also made using an Instron capillary rheometer. The empirical relationship developed by Cox and Merz was obeyed for the entire series of poly(1-olefins) at all temperatures investigated. Graessley's theory was used to calculate the flow curves for the poly(1-olefins) from the measured molecular weight distributions. The purpose was to investigate the effect of polymer composition on the shear rate dependence of viscosity. It was found that all experimental flow curves except those for poly(1-hexene) can be fitted with the calculated curves from the individual molecular weight distributions. The conclusion is made that flow curves of poly(1-olefins) depend predominately on molecular weight distribution and are essentially independent of side-chain length even for poly(1-olefins) with pendant groups as long as 16 carbon atoms. The low-shear limiting Newtonian viscosity η0 for all poly(1-olefins) was expressed by, η0 = KM̄w3.4 or by η0 = K′P̄w3.4 where M̄w is the weight-average molecular weight and P̄w is the weight-average degree of polymerization. The K and K′ values obtained decrease systematically as the side chain is increased.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...