ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Physics Edition 13 (1975), S. 567-578 
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Radical formation during mechanical degradation of solid poly(2,6-dimethyl-p-phenylene oxide) (PPO) was investigated by electron spin resonance (ESR). The ESR spectrum of PPO fractured at room temperature in air consisted of eight lines with a separation of about 5.5 gauss with g = 2.0043, indicating a small asymmetry. For PPO fractured in liquid nitrogen, a similar spectrum was observed at -196°C in air or in vacuo. These spectra have been identified as belonging to a 2,6-dimethyl-substituted phenoxy radical and thus indicate the occurrence of main-chain rupture. The phenyl radical which was expected to be formed together with a 2,6-dimethyl-substituted phenoxy radical could not be detected, but at temperatures below -46°C a small hump was observed at g = 2.034. By subtracting the spectrum observed after decay of this hump from the original one, the resulting curve was the characteristic asymmetric spectrum of a peroxy radical, which was presumably formed by the reaction between a phenyl radical and oxygen. The radical decay curve showed two stepwise-decaying regions; one located in the temperature region between about -120°C and -80°C where only a small number of radicals decayed, another located in the temperature region from about -30°C to 100°C where almost all mechanically formed radicals decayed. The latter radical decay, which occurred considerably below the glass-transition temperature of PPO, was attributed to the molecular motions associated with the mechanical β* relaxation on the basis of the activation energy and the temperature region.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...