ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 23 (1979), S. 3355-3374 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The useful life of a material depends on its environmental exposure. The diglycidyl ether of bisphenol A (DGEBA) cured with trimethoxyboroxine (TMB) was evaluated under various aging conditions. For isothermal aging, the main factor controlling weight loss appeared to be related to the diffusion of the degradation products (Eact = 22.1 kcal/mole). Chemical decomposition kinetic parameters were obtained using vacuum thermogravimetric analysis (TGA) on powder samples. The thermal decomposition activation energy and the reaction order of cured DGEBA were 37.5 kcal/mole and 1.05, respectively. The hydrolytic aging of this material was also kinetically analyzed, and it was concluded that the weight change was controlled by both water diffusion into the sample and diffusion of hydrolysis products from the sample. During hydrolytic aging below the glass transition temperature, the specimens gained weight up to 0.05 g based on 1-g unaged cured resin and then leveled off. At higher temperatures, the specimens initially gained weight and then began to lose weight, reaching a constant weight gain. The activation energies for water diffusion into the cured resin are 19.5 kcal/mole at temperatures above Tg and 21.5 kcal/mole at temperatures below Tg. The main hydrolysis product was boric acid from reaction of the boroxine ring with water. The time-temperature superposition principle was used for the weight loss study on isothermal and isothermal hydrolytic aging. The scale factor in this approach was found to be the ratio of the diffusion coefficient at the temperature of interest to that at a reference temperature.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...