ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 8 (1964), S. 1113-1128 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A theory of tensile rupture in a noncrystallizing rubber, a particular instance of a more general theory of rupture in simple extension, is outlined. The theory assumes that failure takes place by growth of a crack from some imperfection in the material where the stress is high locally. The imperfections are considered as being equivalent, in terms of stress concentration effects, to small cracks initially present in the material, and the conditions for crack growth to occur are then treated on the basis of the tearing energy criterion of Part I. It is assumed, by analogy with tearing on a macroscopic scale, that the crack grows continuously with time at a rate, dc/dt, given by: dc/dt = ATn, where A and n are constants and T is the energy expended per unit increase in crack length, per unit thickness of specimen. The predicted relationships of the breaking time to the stored energy density and initial crack length for specimens tested by stretching at uniform rates and by holding at fixed extensions are first compared with the results of model experiments on test pieces containing small tears and cuts. Values of A and n derived from tear test data are used in the theoretical relationships, and it is shown that there is fair agreement with experiment. Results of tests on tensile test pieces containing no deliberately introduced tears or cuts are then shown to be consistent with a failure mechanism of the above type. It appears, however, that the tearing energies in tensile rupture are lower than those observed in tear tests, and reasons for this difference are discussed.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...