ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester, West Sussex : Wiley-Blackwell
    Mathematical Methods in the Applied Sciences 17 (1994), S. 697-752 
    ISSN: 0170-4214
    Keywords: Mathematics and Statistics ; Applied Mathematics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics
    Notes: Consider two copies N1, N2 of the interval [0, ∞]. Consider Klein-Gordon equations with (different) constant coefficients on ∝ × Nj ( = time × space). Assume the coincidence of the values of the solution at the boundary points of the Nj for all times and a transmission condition relating its first (one-sided) space derivatives at these points.Under a symmetry condition, we extend the spatial part of the equation and the transmission conditions to a self-adjoint operator (by Friedrichs extension) and reformulate our problem in terms of an abstract wave equation in a suitable Hilbert space. We derive an expansion of the solution in generalized eigenfunctions of this self-adjoint extension and show, that the L∞-norms (in space) of the solution and its first k space derivatives at the time t decay for t → ∞ at least as const. t¼, if the initial conditions satisfy a compatibility condition of order k derived in this paper. The loss of decay rate in comparison with the full line case (const. t-½, cf. [28]) is caused by the tunnel effect.Further we show that an abstract wave equation in a Hilbert space with a Friedrichs extension as spatial part can always be derived from a stationarity principle for an associated action-type functional. This yields a physical legitimation of our model by the principle of stationary action and moreover a criterion for the physical interpretability of all models created by the linear interaction concept [4, 6, 8, 10], in particular for the coupling of media of different dimension (alternative to [13, 16] for similar models).
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...