ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 13 (1991), S. 797-804 
    ISSN: 0271-2091
    Keywords: Unsteady laminar compressible boundary layer ; Non-iterative finite difference method ; Semisimilarity transformation ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A numerical analysis is presented for the unsteady compressible laminar boundary layer driven by a compression or expansion wave. Approximate or series expansion methods have been used for the problems because of the characteristics of the governing equations, such as non-linearity, coupling with the thermal boundary layer equation and initial conditions. Here a transformation of the governing equations and the numerical linearization technique are introduced to deal with the difficulties. First, the governing equations are transformed for the initial conditions by Howarth and semisimilarity variables. These transformations reduce the number of independent variables from three to two and the governing equations from partial to ordinary differential equations at the initial point. Next, the numerical linearization technique is introduced for the non-linearity and the coupling with the thermal boundary layer equation. Because the non-linear terms are linearized without sacrifice of numerical accuracy, the solutions can be obtained without numerical iterations. Therefore the exact numerical solution, not approximate or series expansion, can be obtained. Compared with the approximate or series expansion method, this method is much improved. Results are compared with the series expansion solutions.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...