ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 60 (1996), S. 971-981 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A study of π-electron systems confined by impenetrable surfaces is presented. The study results in a nonempirical-based approach to obtain confinement-adapted semiempirical π-Hamiltonians including repulsive terms (PPP or Hubbard). The impenetrable surface confinement of a physical system involves changes in the boundary conditions that the eigenvectors of its differential Hamiltonian operator have to fulfill, while the Hamiltonian itself remains unchanged. However, if this Hamiltonian is written in second quantization language, then confinement only involves changes of the Hamiltonian scalar factors (integrals). Semiempirical Hamiltonian integrals are replaced by parameters; therefore, confinement involves only changes of these parameters. It is shown that confinement changes Coulomb (αi) and exchange (βij), while repulsion (γij) parameters remain unaffected. Next, the influence of confinement upon the electron correlation of (i) π-electron molecular systems, (ii) atoms, and (iii) an electron gas is discussed. The behaviour of the correlation energy vs. the confinement size is found to be different for each type of system. A neat explanation of this variety is given in terms of the Coulomb attractive fields of the systems. Some chemical confinement effects such as an increase in the reactivity of π-electron systems is also outlined. © 1996 John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...