ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 56 (1995), S. 129-155 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: We show that the irreducible tensor operators of the unitary group provide a natural operator basis for the exponential Ansatz which preserves the spin symmetry of the reference state, requires a minimal number of independent cluster amplitudes for each substitution order, and guarantees the invariance of the correlation energy under unitary transformations of core, open-shell, and virtual orbitals. When acting on the closed-shell reference state with nc doubly occupied and nv unoccupied (virtual) orbitals, the irreducible tensor operators of the group U(nc) ⊗ U(nV) generate all Gelfand-Tsetlin (GT) states corresponding to appropriate irreducible representation of U(nc + nv). The tensor operators generating the M-tuply excited states are easily constructed by symmetrizing products of M unitary group generators with the Wigner operators of the symmetric group SM. This provides an alternative to the Nagel-Moshinsky construction of the GT basis. Since the corresponding cluster amplitudes, which are also U(nc) ⊗ U(ns) tensors, can be shown to be connected, the irreducible tensor operators of U(nc) ⊗ U(nv) represent a convenient basis for a spin-adapted full coupled cluster calculation for closed-shell systems. For a high-spin reference determinant with n, singly occupied open-shell orbitals, the corresponding representation of U(n), n=nc + nv + ns is not simply reducible under the group U(nc) ⊗ U(ns) ⊗ U(nv). The multiplicity problem is resolved using the group chain U(n) ⊃ U(nc + nv) ⊗ U(ns) ⊃ U(nc) ⊗U(ns)⊗ U(nv) ⊗ U(nv). The labeling of the resulting configuration-state functions (which, in general, are not GT states when nc 〉 1) by the irreducible representations of the intermediate group U(nc + nv) ⊗U(ns) turns out to be equivalent to the classification based on the order of interaction with the reference state. The irreducible tensor operators defined by the above chain and corresponding to single, double, and triple substitutions from the first-, second-, and third-order interacting spaces are explicitly constructed from the U(n) generators. The connectedness of the corresponding cluster amplitudes and, consequently, the size extensivity of the resulting spin-adapted open-shell coupled cluster theory are proved using group theoretical arguments. The perturbation expansion of the resulting coupled cluster equations leads to an explicitly connected form of the spin-restricted open-shell many-body perturbation theory. Approximation schemes leading to manageable computational procedures are proposed and their relation to perturbation theory is discussed. © 1995 John Wiley & Sons, Inc.
    Additional Material: 7 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...