ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 21 (1992), S. 45-57 
    ISSN: 0886-1544
    Keywords: cell shape ; gene expression ; pleiotropic effects ; cell cycle ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: We have previously described stable mouse C127 cell lines in which a CaM mini-gene has been expressed in a bovine papilloma virus-based expression vector (Rasmussen and Means: EMBO J. 6:3961-3968. 1987). Elevation of CaM to levels five-fold higher than in control cells caused an acceleration in cell cycle progression by reducing the length of the G1 period. When these cell lines were originally isolated it was observed that cells in which CaM levels were increased had a flattened morphology. In this study we have examined the localization of actin, vimentin, and tubulin in these cells as compared to the BPV-transformed control cell line in order to determine if changes in shape were accompanied by differences in the cytoskeletal organization. Cell-cycle-dependent changes in the levels of mRNAs for histone H4, glyceraldehyde-3-phosphate dehydrogenase, β-actin, vimentin, and β-tubulin have also been examined. Our results indicate that increased CaM causes differences in the organization of microfilaments, intermediate filaments, and microtubules and that these changes are accompanied by selective differences in the cell-cycle-dependent expression of some mRNAs. Elevated CaM was also correlated with a reduced stability of β-tubulin mRNA. These studies indicate that CaM has pleiotropic effects on cell function and suggest that stable cell lines with altered CaM levels may provide a useful model system for understanding the moiecular basis of CaM-dependent regulation of cellular processes.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...