ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Angewandte Chemie International Edition in English 25 (1986), S. 683-701 
    ISSN: 0570-0833
    Keywords: Electroorganic synthesis ; Electrochemistry ; Synthetic methods ; Redox chemistry ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The electrochemical formation and regeneration of redox agents for organic syntheses (indirect electrolysis) widens the potential of electrochemistry, as higher or totally different selectivities can often be obtained while at the same time the energy input can be lowered significantly. Higher current densities can also be obtained by preventing otherwise often encountered electrode inhibition. New types of redox catalysts can be formed in-situ and can be regenerated after reaction with the substrates. This principle is of increasing importance also for the application of already known redox agents with regard to environmental protection, since large amounts of a product can be generated in a closed circuit using only relatively small amounts of the redox reagent. Consequently the operation of such a process can be greatly simplified, and the release of ecologically objectionable spent reagents into the environment can be prevented. The broad spectrum of redox catalysts currently in use includes, inter alia, metal salts in very low or high oxidation states, halogens in various oxidation states, and, in particular, a wide variety of transition-metal complexes. A great deal of progress has recently been made in the application of organic electron transfer agents, since compounds have been found that are sufficiently stable in both the reduced as well as the oxidized state.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...