ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Non-ionic, hydrophobically associating, water soluble N-isopropylacrylamide-co-acrylamide (IPAM) copolymers have been synthesized and characterized specifically for the study of drag reduction. The drag reduction (DR) performance has been measured with a rotating disk rheometer and a capillary flow apparatus. The DR studies were performed in deionized water, 0.514 M NaCl and 1 M urea. DR efficiency is dependent on copolymer structure, composition, and solvation. Copolymers showing intermediate values of hydrophobic character are found to be the most effective drag reducers. For this copolymer series, IPAM-70 (the copolymer synthesized with 70 mole% N-isopropylacrylamide in the feed) is the most efficient drag reducer. The DR properties of the IPAM copolymers are influenced by hydrophobic associations as well as hydrogen bonding. The effects of salts from the Hofmeister series, cosolvents such as dioxane, and temperature are also examined. Drag reduction performance of the various copolymers is correlated to empirical relationships involving degree of polymerization, second virial coefficient or other solvation parameters, and concentration.
    Additional Material: 18 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...