ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 31 (1991), S. 879-885 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A phenomenological model used in a previous work for spinodal decomposition of polymer-solvent systems is further analyzed. From the dimensionless form of the nonlinear Cahn-Hilliard equation, the dimensionless induction time is found to be a constant number for suddenly quenched systems. Computer simulation is carried out for prediction of early stage behavior with thermal history corresponding to a linear temperature drop followed by a constant temperature vs. time. In the areas of polymer membrane formation and phase separation studies, the universality of the constant dimensionless Induction time for suddenly quenched systems allows the determination of the minimum time needed for phase separation via spinodal decomposition. Also, simulation results for the double linear temperature history allows the convenient prediction of early stage spinodal decomposition behavior at every point of a membrane cross section undergoing thermal inversion phase separation.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...