ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The microstructure of injection molded bars (2.9 and 5.8 mm thick) of thermotropic liquid crystalline poly(p-hydroxy-benzoic acid-co-ethylene terephthalate) has been studied by SEM on samples etched with n-propylamine, SEM fractography, DSC, IR, ESCA, WAXS and polarized microscopy. The 2.9 mm bar consists of three different layers: a highly oriented surface skin, an oriented intermediate layer and a non-oriented core. The 5.8 mm bar has a more complex microstructure and is composed of five different layers: a highly oriented surface skin, an oriented layer just beneath, a non-oriented layer, another oriented layer and a non-oriented core. The thicknesses of the different layers vary, significantly, with distance from the mold gate. The thickness of the core increases, significantly, with increasing distance from the mold gate at the expense of the oriented layers. The structure within the different morphological layers is not perfectly uniform. Tensile testing demonstrated the mechanical anisotropy of the surface material (a ratio of almost 20 between the longitudinal and transverse moduli) and the isotropy of the central core material.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...