ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 25 (1985), S. 1008-1016 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Mold filling of a rectangular cavity of three different thick nesses fed from a reservoir is studied for unfilled and glass fiber-filled polypropylene and polystyrene. The shapes of flow fronts studied by short-shots are affected predominantly by the thickness of the cavity with other parameters playing a less important role. Pressure drop versus volumetric flow rate inside the thinnest cavity is studied experimentally and predictions are made from a computer simulation of mold filling. The orientation of fibers in the cavity is examined using a reflect-type microscope and the orientation is found to depend on cavity thickness, melt temperature, fiber content, and to a lesser extent, on volumetric flow rate. In the thinnest cavity, where the flow is quasi-unidirectional, the fibers remain in the plane of flow oriented either along the flow direction or perpendicular to it, except in the region near the flow front, where they follow a “fountain” flow behavior.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...