ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 19 (1979), S. 512-518 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The rate of fatigue crack propagation in graphite fiber reinforced nylon 66 was measured. A model of the form å = β [Kmax1-γ ΔKγ]r was used to correlate the rate of crack propagation å with the maximum stress intensity Kmax and the amplitude of the stress intensity ΔK experienced by the notched specimen during the fatigue test. The quantities β, γ and r were constant at fixed temperature and frequency of the test. It was also found that there exists both an upper and a lower threshold of stress intensity for the slow ropagation of damage during fatigue. The mechanism of crack propagation in the short graphite fiber reinforced nylon was found to be similar to the growth and fracture of crazes in thermoplastics. The propagation of damage at the crack tip is controlled by matrix deformation, cavitation, fiber breakage and fiber pullout. Damage can propagate in the absence of crack growth until a critical point is reached at which time the material fractures catastrophically.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...