ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 41 (1998), S. 104-110 
    ISSN: 0021-9304
    Keywords: bone morphogenetic protein ; osteoblasts ; microspheres ; poly(d,l lactide-co-glycolide) ; cellular responses ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Porous 50:50 poly(d,l lactide-co-glycolide) microspheres containing varying amounts of “free” recombinant human bone morphogenetic protein-2 (rhBMP-2) were evaluated for their ability to induce/enhance expression of osteoblastic characteristics by pluripotent mesenchymal cells in vitro. “Free” protein (Fp) is defined as protein present on the surface and within the porous matrix of the microspheres. Four preparations of bioerodible particles (BEP) were used: blank - without rhBMP-2; low Fp - 24 μg of free rhBMP-2 per g of particles; medium Fp - 403 μg/g; and high Fp - 884 μg/g. C3H10T1/2 cells (C3H) and bone marrow stromal cells (BMC) were cultured with 1 mg of BEP for up to 4 weeks, and cell growth and expression of osteogenic responses were determined weekly. For both cell types, control cultures (neither BEP nor rhBMP-2) and cultures with blank BEP exhibited no or minimal osteoblastic characteristics. Compared to control and blank BEP cultures, C3H cells responded to particles having medium and high amounts of free rhBMP-2 with increased cell growth and alkaline phosphatase activity, but osteocalcin secretion and mineralization were not markedly influenced. Low Fp BEP enhanced only the alkaline phosphatase activity of C3H cells. In contrast, although growth was not affected, rhBMP-2-loaded BEP increased alkaline phosphatase activity, osteocalcin secretion, and mineralization in BMC cultures in a dose-dependent manner (i.e., blank 〈 low 〈 medium 〈 high Fp). © 1998 John Wiley & Sons, Inc. J Biomed Mater Res, 41, 104-110, 1998.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...