ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 28 (1994), S. 981-992 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: With the identification of the exacerbating effect of glutaraldehyde on calcification of heart valve materials, there exists a renewed interest in both alternative reagents and the effects of crosslinking on connective tissues. One potentially useful class of reagents are poly(glycidyl ether) compounds. We have examined 5 of these reagents with different molecular sizes and functionalities for their effects on mechanical properties and collagen denaturation (shrinkage) temperature. Samples of bovine pericardium were tested fresh or after 48 h fixation in one of the five compounds for denaturation temperature, stress-strain response, stress relaxation, plastic deformation, and fracture properties. Of the compounds tested, those with intermediate length backbones and 4 or 5 epoxide groups were most effective in producing intrahelical crosslinking and increased denaturation temperature over 48 h. However, in samples examined after 17 months of fixation, all reagents had equivalently increased the denaturation temperature. Examination of mechanical results revealed two distinct mechanisms for mechanical change. Observed shifting of the stress-strain curve to the right (due to shrinkage), increased plastic deformation, and some reduction of stress relaxation are all unrelated to denaturation temperature (and hence to changes in intrahelical crosslinking). An alternate mechanism, perhaps formation of intermolecular crosslinks may be responsible. Intrahelical crosslinking produces only lesser reductions in stress relaxation. Cross-comparison of reagents of differing molecular structure provides a useful tool toward increased understanding of the mechanical consequences of tissue crosslinking. © 1994 John Wiley & Sons, Inc.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...