ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Fire and Materials 21 (1997), S. 41-49 
    ISSN: 0308-0501
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Flame-retarded epoxy composites and phenolic composites containing fiberglass, aramid (Kevlar® 49), and graphite fiber-reinforcements were tested using the NASA upward flame propagation test, the controlled-atmosphere cone calorimeter test, and the liquid oxygen (LOX) mechanical impact test. The upward flame propagation test showed that phenolic/graphite had the highest flame resistance and epoxy/graphite had the lowest flame resistance. The controlled-atmosphere cone calorimeter was used to investigate the effect of oxygen concentration and fiber reinforcement on the burning behavior of composites. The LOX mechanical impact test showed that epoxy/fiberglass had the lowest ignition resistance and phenolic/aramid had the highest ignition resistance in LOX. The composites containing epoxy resin and/or aramid fiber reinforcement reacted very violently in LOX upon mechanical impact. © 1997 by John Wiley & Sons, Ltd.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...