ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 59 (1998), S. 438-444 
    ISSN: 0006-3592
    Keywords: bioremediation ; plasma discharge ; dichlorophenol degradation ; perchloroethylene degradation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Pulsed electric discharge (PED) and bioremediation were combined to create a novel two-stage system which dechlorinates the halogenated pollutants, 2,4-dichlorophenol and perchloroethylene, with repetitive (0.1-1 kHz), short pulse (∼100 ns), low voltage (40-80 kV) discharges and then mineralizes the less chlorinated products with aerobic bacteria. A 6.1 mM aqueous dichlorophenol sample was cycled through the PED reactor (60 kV of applied pulsed voltage and 300 Hz) 6 times, resulting in the release of 55% of the initial dichlorophenol chloride ions (1 mM Cl- removed each cycle). The respective average specific efficiency is 0.4-0.6 keV/(Cl- molecule). Pseudomonas mendocina KR1, which grows in minimal medium supplemented with phenol but not with dichlorophenol, increased in cell density in all cultures supplemented with the PED-treated DCP samples and yielded a maximum of two-fold additional Cl- released compared to the PED-related alone. The number of PED-treatment cycles, voltage, and frequency were also varied, showing that both cell densities and overall dichlorophenol dechlorination were highly dependent upon the number of PED-treatment cycles, rather than the tested voltages and frequencies. Using this two-stage treatment system, PED released 31% of the initial chloride ions from dichlorophenol (after three cycles at 40-45 kV and 1.2 kHz) while P. mendocina KR1 in the second stage increased dechlorination to 90%. These results were corroborated by the 35% additional chloride release found with activated sludge cultures. Perchloroethylene (0.6 mM) was similarly treated in a first-stage PED reactor (80% chloride removal after four cycles) followed by biodegradation of the dechlorinated products with a recombinant toluene o-monooxygenase-expressing Pseudomonas fluorescens strain. Gas chromatographic analysis showed that the PED reactor created less-chlorinated byproducts (i.e., trichloroethylene) that were removed (74%) upon exposure to the recombinant bacterium. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 59:438-444, 1998.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...