ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 69-79 
    ISSN: 0006-3592
    Keywords: E. coli ; linear optimization ; metabolic fluxes ; stoichiometry ; sensitivity analysis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Stoichiometrically based flux balance models provide a method to quantify the metabolic pathway fluxes within a living cell. Predictions of flux balance models are expected to have applications in pathway engineering as well as in bioprocess design and control. These models utilize optimality principles applied to metabolic pathway stoichiometry along with the metabolic requirements for growth to determine the flux distribution in a metabolic network. A flux balance model has been developed for Escherichia coli W3110 using five experimentally determined strain-specific parameters. In this report, we determine the sensitivity of the predictions of the flux balance model to these five strain-specific parameters. Model predictions are shown to be sensitive to the two parameters describing metabolic capacity, while they are relatively insensitive to the three parameters that describe the metabolic requirements for growth. Thus, when stoichiometrically based models are formulated for additional strains one needs to measure the metabolic capacity (maximum rates of nutrient and oxygen utilization) accurately. Determination of metabolic capacity from batch experiments is relatively easy to perform. On the other hand, the harder to determine maintenance parameters need not be as accurately determined. © 1995 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...