ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 16 (1977), S. 1201-1222 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The thermoelastic behavior of water solvated elastin has been investigated in simple tension, in the temperature range 0-70°C. Specimens purified from both the ox ligamentum nuchae and pig thoracic aorta have been studied. Force data obtained by cycling the temperature for various constant specimen lengths display a separated variable dependence of the form f = A(T)B(α), where T is absolute temperature and α the extension ratio. For ligament elastin B(α) is a linear function whereas for aortic elastin it is a nonlinear function. The applicability of the rubber elasticity theory to elastin has been tested by setting A(T) equal to the temperature-dependent front factor for simple tension of a homogeneous rubber whilst B(α) is left undefined. In this way it has been possible to take into account the fibrous nonhomogeneity of the polymer, and also to avoid any inconsistency within the theory of attributing a dependence of the variable fe/f upon extension ratio. The behavior of both ligament and aortic elastin agrees well with the conclusion that the dominant deformation mechanism is entropy elastic, fe/f ≪ 1. The linearity of the load isotherm for ligament elastin permits a particularly simple experimental procedure using a single force-temperature plot for one value of interclamp length. Using this procedure high precision has been obtainble, and the data shows a close adherence to the theory with fe/f = 0.1. The relationship between this result and current controversy over the molecular conformation of elastin is discussed.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...