ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-12-10
    Description: We investigate the dependence of event-specific ground-motion residuals in the Ridgecrest region, California. We focus on the impact of using either local (ML) or moment (Mw) magnitude, for describing the source scaling of a regional ground-motion model. To analyze homogeneous Mw, we compute the source spectra of about 2000 earthquakes in the magnitude range 2.5–7.1, by performing a nonparametric spectral decomposition. Seismic moments and corner frequencies are derived from the best-fit ω−2 source models, and stress drop is computed assuming standard circular rupture model. The Brune stress drop varies between 0.62 and 24.63 MPa (with median equal to 3.0 MPa), and values for Mw 〉 5 are mostly distributed above the 90th percentile. The median scaled energy for Mw 〈5 is −4.57, and the low values obtained for the Mw 6.4 and 7.1 mainshocks (−5 and −5.2, respectively) agree with previous studies. We calibrate an ad hoc nonparametric ML scale for the Ridgecrest region. The main differences with the standard ML scale for California are observed at distances between 30 and 100 km, in which differences up to 0.4 magnitude units are obtained. Finally, we calibrate ground-motion models for the Fourier amplitude spectra, considering the ML and Mw scales derived in this study and the magnitudes extracted from Comprehensive Earthquake Catalog. The analysis of the residuals shows that ML better describes the interevent variability above 2 Hz. At intermediate frequencies (between about 3 and 8 Hz), the interevent residuals for the model based on Mw show a correlation with stress drop: this correlation disappears, when ML is used. The choice of the magnitude scale has an impact also on the statistical uncertainty of the median model: for any fixed magnitude value, the epistemic uncertainty is larger for ML below 1.5 Hz and larger for Mw above 1.5 Hz.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...