ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-02-07
    Description: Highlights • Fermentation, methanogenesis and methanotrophy prevail at the As-contaminated site. • Reducing aquifer consists of gray sediment and is dominated by Fe(III) (oxyhydr)oxides and As(III). • Less reducing aquifer consists of yellow-brown sediment and is dominated by goethite and As(V). • Anaerobic CH4 oxidation likely supports carbonate mineral formation. • Methanotrophic Fe(III)-reducer Ca. Methanoperedens coincides with As and Fe peaks in sediments. High arsenic (As) concentrations in groundwater are a worldwide problem threatening the health of millions of people. Microbial processes are central in the (trans)formation of the As-bearing ferric and ferrous minerals, and thus regulate dissolved As levels in many aquifers. Mineralogy, microbiology and dissolved As levels can vary sharply within aquifers, making high-resolution measurements particularly valuable in understanding the linkages between them. We conducted a high spatial resolution geomicrobiological study in combination with analysis of sediment chemistry and mineralogy in an alluvial aquifer system affected by geogenic As in the Red River delta in Vietnam. Microbial community analysis revealed a dominance of fermenters, methanogens and methanotrophs whereas sediment mineralogy along a 46 m deep core showed a diversity of Fe minerals including poorly crystalline Fe (II/III) and Fe(III) (oxyhydr)oxides such as goethite, hematite, and magnetite, but also the presence of Fe(II)-bearing carbonates and sulfides which likely formed as a result of microbially driven organic carbon (OC) degradation. A potential important role of methane (CH4) as electron donor for reductive Fe mineral (trans)formation was supported by the high abundance of Candidatus Methanoperedens, a known Fe(III)-reducing methanotroph. Overall, these results imply that OC turnover including fermentation, methanogenesis and CH4 oxidation are important mechanisms leading to Fe mineral (trans)formation, dissolution and precipitation, and thus indirectly affecting As mobility by changing the Fe-mineral inventory.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...