ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: In the last 13 years gas emissions from both the summit and the flanks of Mount Etna volcano have been monitored using remote sensing techniques (COSPEC, and FTIR since 2000) and on-site monitoring devices. The SO2 flux variations (600 to 25,000 Mg/day) indicated: (i) low values coinciding with deep seismicity prior to eruptions or/and preceding increases in summit volcanic activity; (ii) increasing trends tracking the ascent of fresh magma within the shallow feeding system and whose rate seems proportional to the speed of magma rise; (iii) decreasing trends related to progressive degassing of magma batches; (iv) an imbalance between the amount of magma erupted and that which contributed the SO2 emission (~ 13 % of the degassing magma having been erupted during the studied period), implying that magma degassing is dominantly intrusive; (v) a seasonal component, probably due to variations in solar zenith angle, meteorological parameters and, possibly, tidal forces.FTIR monitoring allowed to recognize significant variations of SO2/HCl and SO2/HF ratios in the volcanic plume which, combined with COSPEC data, provided new insight into the dynamics of ascent and degassing of discrete magma bodies. Strong variations in CO2-rich soil degassing are interpreted as markers of gradual magma ascent from great depth (〉10 km) to the upper (〈5 km) feeding system of Mt. Etna. These changes appear to precede increases in SO2 plume flux at the craters and, so, provide additional constraints upon the interpretation of COSPEC data and the modeling of magma rise at that volcano.
    Description: Published
    Description: 111-128
    Description: partially_open
    Keywords: Gas emissions ; Mt. Etna ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Format: 2782375 bytes
    Format: 503 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...