ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Journal of Geophysical Research: Oceans, Wiley, 119(3), pp. 1765-1790, ISSN: 2169-9291
    Publication Date: 2014-04-22
    Description: Two parameterizations of turbulent boundary layer processes at the interface between an ice shelf and the ocean beneath are investigated in terms of their impact on simulated melt rates and feedbacks. The parameterizations differ in the transfer coefficients for heat and freshwater fluxes. In their simplest form, they are assumed constant and hence are independent of the velocity of ocean currents at the ice shelf base. An augmented melt rate parameterization accounts for frictional turbulence via transfer coefficients that do depend on boundary layer current velocities via a drag law. In simulations with both parameterizations for idealized as well as realistic cavity geometries under Pine Island Ice Shelf, West Antarctica, significant differences in melt rate patterns between the velocity-independent and velocity-dependent formulations are found. While patterns are strongly correlated to those of thermal forcing for velocity-independent transfer coefficients, melting in the case of velocity-dependent coefficients is collocated with regions of high boundary layer currents, in particular where rapid plume outflow occurs. Both positive and negative feedbacks between melt rates, boundary layer temperature, velocities, and buoyancy fluxes are identified. Melt rates are found to increase with increasing drag coefficient inline image, in agreement with plume model simulations, but optimal values of Cd inferred from plume models are not easily transferable. Uncertainties therefore remain, both regarding simulated melt rate spatial distributions and magnitudes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...