ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: © 2008 The Author. This is an open-access article distributed under the terms of the Creative Commons Attribution Noncommercial License. The definitive version was published in Environmental Fluid Mechanics 8 (2008): 551-560, doi:10.1007/s10652-008-9076-5.
    Description: Experiments are reviewed in which a two-layer salt-stratified tank of water was mixed by turbulence. The density profile began as a single step and evolved to a smooth mixed profile. The turbulence was generated by many excursions of a horizontally moving vertical rod with Richardson number Ri 〉 0.9 and Reynolds Number Re 〉 600. There was almost perfect collapse of all the profiles to one universal profile as a function of a similarity variable. We develop a theoretical model for a simple mixing law with a buoyancy flux that is a function of internal Richardson number Rii. A similarity equation is found. A flux law that increases with small Rii and decreases with large Rii is considered next. Since no analytical solution is known, the similarity concept is tested by numerically integrating the equations in space and time. With buoyancy flux monotonically increasing with internal Richardson number, the similarity approach is valid for a profile starting from a slightly smoothed step. However, a shock forms for a mixing law with higher initial Rii (so that buoyancy flux decreases with Richardson number) and the similarity approach is invalid for those initial conditions.
    Keywords: Turbulence ; Mixing ; Stratified ; Similarity solution ; Layered fluid
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...