ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gravinese, P. M., Page, H. N., Butler, C. B., Spadaro, A. J., Hewett, C., Considine, M., Lankes, D., & Fisher, S. Ocean acidification disrupts the orientation of postlarval Caribbean spiny lobsters. Scientific Reports, 10(1), (2020): 18092, doi:10.1038/s41598-020-75021-9.
    Description: Anthropogenic inputs into coastal ecosystems are causing more frequent environmental fluctuations and reducing seawater pH. One such ecosystem is Florida Bay, an important nursery for the Caribbean spiny lobster, Panulirus argus. Although adult crustaceans are often resilient to reduced seawater pH, earlier ontogenetic stages can be physiologically limited in their tolerance to ocean acidification on shorter time scales. We used a Y-maze chamber to test whether reduced-pH seawater altered the orientation of spiny lobster pueruli toward chemical cues produced by Laurencia spp. macroalgae, a known settlement cue for the species. We tested the hypothesis that pueruli conditioned in reduced-pH seawater would be less responsive to Laurencia spp. chemical cues than pueruli in ambient-pH seawater by comparing the proportion of individuals that moved to the cue side of the chamber with the proportion that moved to the side with no cue. We also recorded the amount of time (sec) before a response was observed. Pueruli conditioned in reduced-pH seawater were less responsive and failed to select the Laurencia cue. Our results suggest that episodic acidification of coastal waters might limit the ability of pueruli to locate settlement habitats, increasing postsettlement mortality.
    Description: We thank the Steinwachs Family Foundation, which provided funding that supported Gravinese’s postdoctoral fellowship at Mote Marine Laboratory and Aquarium. We also acknowledge the partial support provided by the St. Petersburg College Titan Achievement minigrant program. Page was supported by a Mote Marine Laboratory and Aquarium Postdoctoral Research Fellowship. Postlarval spiny lobsters were collected with a state-issued Special Activity License (SAL-17-1868G-SR). We also thank those who helped with animal collection throughout this work including in-kind support provided by E. Muller and the Mote CAOS facility, as well as E. Bartels and C. Walter of the Coral Reef Monitoring and Assessment Program at Mote Marine Laboratory and Aquarium, as well as other field personnel including: L. Toth, S. Perry, T. Parker, A. Fine, L. Humphrey, and many undergraduate interns. We also thank L. Toth, E. Ross, B. Sharp, C. Crowley, J. Butler, and B. Crowder for editorial comments.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...