ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 1998. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 103 (1998): 330-335, doi:10.1121/1.421092.
    Description: Amplitude and phase fluctuations of monochromatic acoustic signals traveling through diffuse mid-ocean ridge hydrothermal vent plumes are modeled using existing theory in an attempt to find suitable frequencies and path lengths for plume monitoring. Weak-scattering solutions are evaluated numerically, with model parameters adjusted to match observed plume characteristics. Constraints required for weak-scattering solutions to be valid can be met for transmission ranges of 500–2000 m and frequencies of 20–80 kHz. Therefore, because fluid structure and scattering strength are more closely linked for weak scattering than for stronger scattering, inversion for fluid statistical properties may be possible, enabling diffuse vent monitoring. Such monitoring would be subject to geometric assumptions such as transmission entirely within a statistically homogeneous plume. Performance-limiting phase fluctuations have also been computed for a 13–17 kHz geodetic survey system.
    Description: This work was supported by the Woods Hole Oceanographic Institution with research funds provided by the Mellon Foundation.
    Keywords: Underwater sound ; Oceanography ; Acoustic wave scattering ; Seafloor phenomena
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...