ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Barone, B., Nicholson, D., Ferron, S., Firing, E., & Karl, D. The estimation of gross oxygen production and community respiration from autonomous time-series measurements in the oligotrophic ocean. Limnology and Oceanography-Methods, 17, (2019): 650-664, doi: 10.1002/lom3.10340.
    Description: Diel variations in oxygen concentration have been extensively used to estimate rates of photosynthesis and respiration in productive freshwater and marine ecosystems. Recent improvements in optical oxygen sensors now enable us to use the same approach to estimate metabolic rates in the oligotrophic waters that cover most of the global ocean and for measurements collected by autonomous underwater vehicles. By building on previous methods, we propose a procedure to estimate photosynthesis and respiration from vertically resolved diel measurements of oxygen concentration. This procedure involves isolating the oxygen variation due to biological processes from the variation due to physical processes, and calculating metabolic rates from biogenic oxygen changes using linear least squares analysis. We tested our method on underwater glider observations from the surface layer of the North Pacific Subtropical Gyre where we estimated rates of gross oxygen production and community respiration both averaging 1.0 mmol O2 m−3 d−1, consistent with previous estimates from the same environment. Method uncertainty was computed as the standard deviation of the fitted parameters and averaged 0.6 and 0.5 mmol O2 m−3 d−1 for oxygen production and respiration, respectively. The variability of metabolic rates was larger than this uncertainty and we were able to discern covariation in the biological production and consumption of oxygen. The proposed method resolved variability on time scales of approximately 1 week. This resolution can be improved in several ways including by measuring turbulent mixing, increasing the number of measurements in the surface ocean, and adopting a Lagrangian approach during data collection.
    Description: This study would not have been possible without the skilled contribution of Steve Poulos (University of Hawaii) who directed glider operations including deployments, recoveries, and piloting. We thank Steve and all the other people involved in these activities including Sarah Searson, Gabe Foreman, Jim Burkitt, and Blake Watkins (University of Hawaii). We thank Henry Bittig (Laboratoire d'Océanographie de Villefranche) for his advice on the inverse filtering correction. We thank Saulo Soares, Andrei Natarov, and Kelvin Richards (University of Hawaii) for their comments on an early draft of this manuscript. We also thank Sam Wilson, Tara Clemente, Dan Sadler, Susan Curless, and Walt Deppe (University of Hawaii) for leading the oceanographic cruises used for glider deployments and recoveries. We thank the HOT‐SCOPE team for measuring the Winkler O2 concentration used for optode calibration. We thank Jesse M. Wilson for providing us the period of the CR measurements reported in Wilson et al. (2014). Finally, we thank captains and crews of R/V Kilo Moana and R/V Ka'imikai‐O‐Kanaloa, and the Ocean Technology Group of the University of Hawaii for their assistance at sea. Glider data used in this article are available on the ftp server of the School of Ocean and Earth Science and Technology of the University of Hawaii (ftp://ftp.soest.hawaii.edu/pilot/). Blended Sea Winds are distributed by NOAA‐NCDC and are available at https://www.ncdc.noaa.gov. Sea‐level pressure from the NCEP/NCAR reanalysis is available at https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surface.html. Satellite PAR is distributed by NASA and available at https://oceandata.sci.gsfc.nasa.gov. This research was supported by the 2015 Balzan Prize to D.M.K., the Simons Foundation (SCOPE award 329108 to D.M.K. and E.F. DeLong), the Gordon and Betty Moore Foundation (grant #3794 to D.M.K.), and the National Science Foundation through grants to C‐MORE (EF‐0424599 to D.M.K.) and HOT (OCE‐1260164 to D.M.K). D.N. was supported by NSF (OCE‐1129644) and an Independent Study Award from the Woods Hole Oceanographic Institution.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...