ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Freshwater Biological Association | Ambleside, UK
    In:  http://aquaticcommons.org/id/eprint/5316 | 1256 | 2011-09-29 15:05:33 | 5316 | Freshwater Biological Association
    Publication Date: 2021-07-09
    Description: The advent of molecular biology has had a dramatic impact on all aspects of biology, not least applied microbial ecology. Microbiological testing of water has traditionally depended largely on culture techniques. Growing understanding that only a small proportion of microbial species are culturable, and that many microorganisms may attain a viable but non-culturable state, has promoted the development of novel approaches to monitoring pathogens in the environment. This has been paralleled by an increased awareness of the surprising genetic diversity of natural microbial populations. By targeting gene sequences that are specific for particular microorganisms, for example genes that encode diagnostic enzymes, or species-specific domains of conserved genes such as 16S ribosomal RNA coding sequences (rrn genes), the problems of culture can be avoided. Technical developments, notably in the area of in vitro amplification of DNA using the polymerase chain reaction (PCR), now permit routine detection and identification of specific microorganisms, even when present in very low numbers. Although the techniques of molecular biology have provided some very powerful tools for environmental microbiology, it should not be forgotten that these have their own drawbacks and biases in sampling. For example, molecular techniques are dependent on efficient lysis and recovery of nucleic acids from both vegetative forms and spores of microbial species that may differ radically when growing in the laboratory compared with the natural environment. Furthermore, PCR amplification can introduce its own bias depending on the nature of the oligonucleotide primers utilised. However, despite these potential caveats, it seems likely that a molecular biological approach, particularly with its potential for automation, will provide the mainstay of diagnostic technology for the foreseeable future.
    Keywords: Engineering ; Limnology ; Pollution ; Water quality ; Microbiology ; Microorganisms ; Methodology ; Molecular biology ; DNA ; Polymerase chain reaction ; Detection ; RNA ; Bacteria ; Bacterial diseases
    Repository Name: AquaDocs
    Type: book_section , FALSE
    Format: application/pdf
    Format: application/pdf
    Format: 11-18
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...